Subalgebra A52A15
24 out of 37
Computations done by the calculator project.

Subalgebra type: A52 (click on type for detailed printout).
Subalgebra is (parabolically) induced from A51 .
Centralizer: 0
The semisimple part of the centralizer of the semisimple part of my centralizer: A15

Elements Cartan subalgebra scaled to act by two by components: A52: (2, 3, 3, 3, 2): 10, (0, -1, 0, -2, -2): 10
Dimension of subalgebra generated by predefined or computed generators: 8.
Negative simple generators: g6+g11+g12, 2g5+g4+g2
Positive simple generators: 2g12+g11+2g6, g2+2g4+g5
Cartan symmetric matrix: (2/51/51/52/5)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): (105510)
Decomposition of ambient Lie algebra: V2ω1+2ω2Vω1+ω2
In the table below we indicate the highest weight vectors of the decomposition of the ambient Lie algebra as a module over the semisimple part. The second row indicates weights of the highest weight vectors relative to the Cartan of the semisimple subalgebra.
Highest vectors of representations (total 2) ; the vectors are over the primal subalgebra.g8+2g7+2g1g10
weightω1+ω22ω1+2ω2
Isotypic module decomposition over primal subalgebra (total 2 isotypic components).
Isotypical components + highest weightVω1+ω2 → (1, 1)V2ω1+2ω2 → (2, 2)
Module label W1W2
Module elements (weight vectors). In blue - corresp. F element. In red -corresp. H element. Semisimple subalgebra component.
1/2g8g7g1
1/2g2g41/2g5
g12+1/2g11+g6
h5h41/2h2
h53/2h43/2h33/2h2h1
1/2g61/2g111/2g12
2g5+g4+g2
1/2g11/2g71/2g8
g10
g3
g13
g9
g8+g7
g8+g1
2g15
2g4g5
g2+g4g5
2g122g11
2g12g11g6
g14
2h5+2h4
2h5+h4+h2
6g14
2h5h4h3+2h2+h1
2g11g12
12g56g4
g6+4g113g12
10g54g42g2
g15
2g74g8
24g9
g1+4g710g8
2g13
6g3
2g10
Weights of elements in fundamental coords w.r.t. Cartan of subalgebra in same order as aboveω1+ω2
ω1+2ω2
2ω1ω2
0
0
2ω1+ω2
ω12ω2
ω1ω2
2ω1+2ω2
3ω2
3ω1
2ω1+4ω2
ω1+ω2
ω1+ω2
4ω12ω2
ω1+2ω2
ω1+2ω2
2ω1ω2
2ω1ω2
3ω1+3ω2
0
0
3ω13ω2
0
2ω1+ω2
ω12ω2
2ω1+ω2
ω12ω2
4ω1+2ω2
ω1ω2
2ω14ω2
ω1ω2
3ω1
3ω2
2ω12ω2
Weights of elements in (fundamental coords w.r.t. Cartan of subalgebra) + Cartan centralizerω1+ω2
ω1+2ω2
2ω1ω2
0
0
2ω1+ω2
ω12ω2
ω1ω2
2ω1+2ω2
3ω2
3ω1
2ω1+4ω2
ω1+ω2
ω1+ω2
4ω12ω2
ω1+2ω2
ω1+2ω2
2ω1ω2
2ω1ω2
3ω1+3ω2
0
0
3ω13ω2
0
2ω1+ω2
ω12ω2
2ω1+ω2
ω12ω2
4ω1+2ω2
ω1ω2
2ω14ω2
ω1ω2
3ω1
3ω2
2ω12ω2
Single module character over Cartan of s.a.+ Cartan of centralizer of s.a.Mω1+ω2Mω1+2ω2M2ω1ω22M0M2ω1+ω2Mω12ω2Mω1ω2M2ω1+2ω2M3ω2M3ω1M2ω1+4ω22Mω1+ω2M4ω12ω22Mω1+2ω22M2ω1ω2M3ω1+3ω23M0M3ω13ω22M2ω1+ω22Mω12ω2M4ω1+2ω22Mω1ω2M2ω14ω2M3ω1M3ω2M2ω12ω2
Isotypic characterMω1+ω2Mω1+2ω2M2ω1ω22M0M2ω1+ω2Mω12ω2Mω1ω2M2ω1+2ω2M3ω2M3ω1M2ω1+4ω22Mω1+ω2M4ω12ω22Mω1+2ω22M2ω1ω2M3ω1+3ω23M0M3ω13ω22M2ω1+ω22Mω12ω2M4ω1+2ω22Mω1ω2M2ω14ω2M3ω1M3ω2M2ω12ω2

Semisimple subalgebra: W_{1}
Centralizer extension: 0

Weight diagram. The coordinates corresponding to the simple roots of the subalgerba are fundamental.
The bilinear form is therefore given relative to the fundamental coordinates.
Canvas not supported




Mouse position: (0.00, 0.00)
Selected index: -1
Coordinate center in screen coordinates:
(200.00, 472.50)
The projection plane (drawn on the screen) is spanned by the following two vectors.
(1.00, 0.00)
(0.00, 1.00)
0: (1.00, 0.00): (533.33, 639.17)
1: (0.00, 1.00): (366.67, 805.83)




Made total 22366 arithmetic operations while solving the Serre relations polynomial system.