Highest vectors of representations (total 2) ; the vectors are over the primal subalgebra. | g8+2g7+2g1 | g10 |
weight | ω1+ω2 | 2ω1+2ω2 |
Isotypical components + highest weight | Vω1+ω2 → (1, 1) | V2ω1+2ω2 → (2, 2) | |||||||||||||||||||||||||||||||||||||
Module label | W1 | W2 | |||||||||||||||||||||||||||||||||||||
Module elements (weight vectors). In blue - corresp. F element. In red -corresp. H element. | Semisimple subalgebra component.
|
| |||||||||||||||||||||||||||||||||||||
Weights of elements in fundamental coords w.r.t. Cartan of subalgebra in same order as above | ω1+ω2 −ω1+2ω2 2ω1−ω2 0 0 −2ω1+ω2 ω1−2ω2 −ω1−ω2 | 2ω1+2ω2 3ω2 3ω1 −2ω1+4ω2 ω1+ω2 ω1+ω2 4ω1−2ω2 −ω1+2ω2 −ω1+2ω2 2ω1−ω2 2ω1−ω2 −3ω1+3ω2 0 0 3ω1−3ω2 0 −2ω1+ω2 ω1−2ω2 −2ω1+ω2 ω1−2ω2 −4ω1+2ω2 −ω1−ω2 2ω1−4ω2 −ω1−ω2 −3ω1 −3ω2 −2ω1−2ω2 | |||||||||||||||||||||||||||||||||||||
Weights of elements in (fundamental coords w.r.t. Cartan of subalgebra) + Cartan centralizer | ω1+ω2 −ω1+2ω2 2ω1−ω2 0 0 −2ω1+ω2 ω1−2ω2 −ω1−ω2 | 2ω1+2ω2 3ω2 3ω1 −2ω1+4ω2 ω1+ω2 ω1+ω2 4ω1−2ω2 −ω1+2ω2 −ω1+2ω2 2ω1−ω2 2ω1−ω2 −3ω1+3ω2 0 0 3ω1−3ω2 0 −2ω1+ω2 ω1−2ω2 −2ω1+ω2 ω1−2ω2 −4ω1+2ω2 −ω1−ω2 2ω1−4ω2 −ω1−ω2 −3ω1 −3ω2 −2ω1−2ω2 | |||||||||||||||||||||||||||||||||||||
Single module character over Cartan of s.a.+ Cartan of centralizer of s.a. | Mω1+ω2⊕M−ω1+2ω2⊕M2ω1−ω2⊕2M0⊕M−2ω1+ω2⊕Mω1−2ω2⊕M−ω1−ω2 | M2ω1+2ω2⊕M3ω2⊕M3ω1⊕M−2ω1+4ω2⊕2Mω1+ω2⊕M4ω1−2ω2⊕2M−ω1+2ω2⊕2M2ω1−ω2⊕M−3ω1+3ω2⊕3M0⊕M3ω1−3ω2⊕2M−2ω1+ω2⊕2Mω1−2ω2⊕M−4ω1+2ω2⊕2M−ω1−ω2⊕M2ω1−4ω2⊕M−3ω1⊕M−3ω2⊕M−2ω1−2ω2 | |||||||||||||||||||||||||||||||||||||
Isotypic character | Mω1+ω2⊕M−ω1+2ω2⊕M2ω1−ω2⊕2M0⊕M−2ω1+ω2⊕Mω1−2ω2⊕M−ω1−ω2 | M2ω1+2ω2⊕M3ω2⊕M3ω1⊕M−2ω1+4ω2⊕2Mω1+ω2⊕M4ω1−2ω2⊕2M−ω1+2ω2⊕2M2ω1−ω2⊕M−3ω1+3ω2⊕3M0⊕M3ω1−3ω2⊕2M−2ω1+ω2⊕2Mω1−2ω2⊕M−4ω1+2ω2⊕2M−ω1−ω2⊕M2ω1−4ω2⊕M−3ω1⊕M−3ω2⊕M−2ω1−2ω2 |